# Pseudo Zero Pronoun Resolution Improves Zero Anaphora Resolution

Ryuto Konno<sup>1</sup>, Shun Kiyono<sup>2,3</sup>, Yuichiroh Matsubayashi<sup>3,2</sup>, Hiroki Ouchi<sup>4,2</sup>, Kentaro Inui<sup>3,2</sup>

<sup>1</sup>Recruit Co., Ltd. <sup>2</sup>RIKEN <sup>3</sup>Tohoku University <sup>4</sup>Nara Institute of Science and Technology

### **Summary**

■ Task: **Zero Anaphora Resolution (ZAR)** in Japanese

The **criminal**'s weapon was found in the victim's room. It seems that  $\phi$  used a hammer.

- We proposed
  - A new **pretraining task** for ZAR
  - A new **finetuning method** for ZAR



- Results:
  - The two proposals **boost the SoTA** performance of ZAR
  - Our analysis provides new insights on the remaining challenges

## Task: Zero Anaphora Resolution (ZAR)

Let's take a look at the following example:

In English

The **criminal**'s weapon was found in the victim's room.

refer to

It seems that **he** used a hammer.



### Task: Zero Anaphora Resolution (ZAR)

What is "Zero Anaphora"?

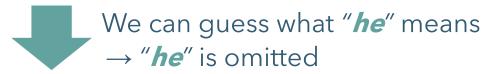
In English

The **criminal**'s weapon was found in the victim's room.

refer to

It seems that **he** used a hammer.

pronoun



In Japanese, Chinese, Korean, Italian, Spanish, ...

The **criminal**'s weapon was found in the victim's room.

🍾 zero anaphora

It seems that  $\phi$  used a hammer.

zero pronoun

- What is "Zero Anaphora Resolution (ZAR)"?
  - Recognizing the antecedents of zero pronouns

### Japanese Zero Anaphora Resolution

The **criminal**'s weapon was found in the victim's room.

🔍 zero anaphora

It seems that  $(\phi)$  used a hammer.

```
In Japanese
```

```
被害者の 部屋 から 犯人の 凶器が 見つかった。

victim-GEN room from criminal-GEN weapon-NOM was found.

(φ-NOM) ハンマーを 使用した 模様。

(φ-NOM) hammer-ACC used seem.
```

#### Not easy to find where the zero pronoun is in the sentences



Cast to predicate-argument structure analysis

The semantic arguments of "used" are...

- Nominative (subject) : the ciriminal
- Accusative (direct object): a hammer

### Two Research Questions for ZAR Task

The model needs ...

(1) To acquire a large amount of anaphoric relational knowledge

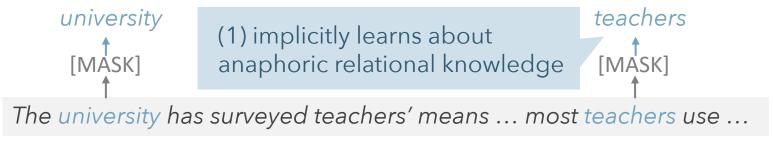


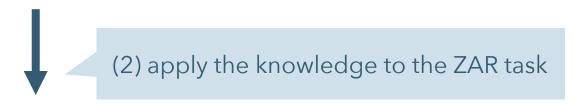
(2) To apply the acquired knowledge to the ZAR task

### Recent Approaches: Masked Language Models

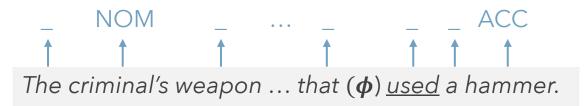
[devlin+'19]

Pretraining: Cloze Task





- Finetuning: Argument Selection with Label Probability (AS)
  - Identifying Nominative (NOM), Accusative (ACC), and Dative (DAT)

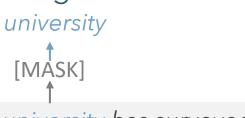


A target predicate

### **Two Problems on Previous Approaches**

Pretraining: Cloze Task

No supervision on anaphoric relations

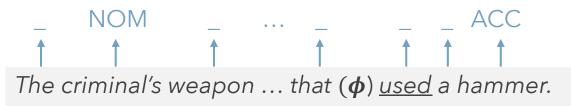


teachers [MASK]

The university has surveyed teachers' means ... most teachers use ...



- Pretrain-finetune discrepancy [Yang+'19]
  - [MASK] is not used
  - Last Layer is replaced/added
- Finetuning: **Argument Selection with Label Probability (AS)** 
  - Identifying Nominative (NOM), Accusative (ACC), and Dative (DAT)



A target predicate

### **Our Approaches**

- Pretraining: Pseudo Zero Pronoun Resolution (PZERO)
- Explicit supervision on anaphoric relations

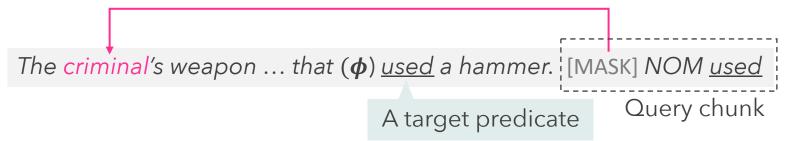
The university has surveyed teachers' means ... most teachers use ...



- Smoother adaptation
  - Both predict antecedents
  - We can use the same network structure

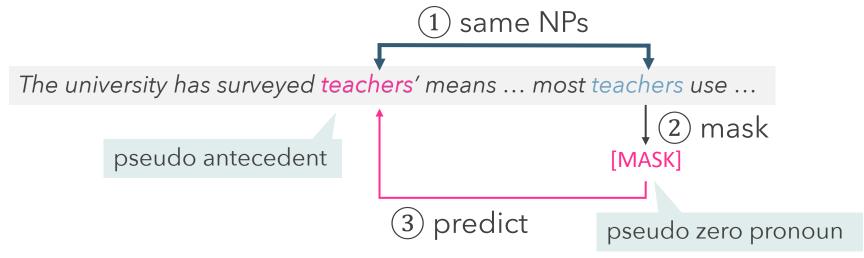
[MASK]

- Finetuning: Argument Selection as PZERO (AS-PZERO)
  - Identifying Nominative (NOM), Accusative (ACC), and Dative (DAT)



#### Pretraining: Pseudo Zero Pronoun Resolution (PZERO)

- 1. We assume that same noun phrases (NPs) are coreferent
- 2. One of them is masked as a pseudo zero pronoun
- 3. The model predicts the other NPs as its **pseudo antecedents**

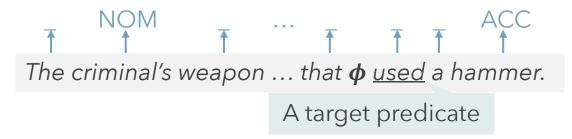


Pseudo Zero Pronoun Resolution (PZERO):

- provides explicit supervision on anaphoric relations
- is too strong assumption but can provide a large-scale dataset from raw corpora

#### Finetuing: Argument Selection as PZERO (AS-PZERO)

Argument Selection with Label Probability (AS)



Argument Selection as PZERO (AS-PZERO)

2 predict antecedents

The criminal's weapon ... that  $\phi$  used a hammer. [MASK] NOM used

A target predicate

1 Query chunk

Smoother adaptation

- Both predict antecedents
- We can use the same network structure
- Pretraining: PZERO

  [MASK]

  The university has surveyed teachers' means ... most teachers use ...

### **Experiments**

- We initialized the model parameters with the pretrained masked language model
  - bert-base-japanese model (transformers library)
- Further Pretraining on Japanese Wikipedia corpus
  - Cloze Task 30K updates
  - PZERO Task 30K updates

Can this combination improve the performance of ZAR?

- Finetuning on NAIST Text Corpus [iida+'17]
  - Baseline Model (AS)
  - Proposed Model (AS-PZERO)

#### **■** Evaluation

- Data: NAIST Text Corpus Test set
- Metrics: F<sub>1</sub> score

- 1 The effective of PZERO task
- ② The effective of AS-PZERO model

| Pretraining  | Further Pretraining |              | Finetuning |              | ZAR F <sub>1</sub>  |     |
|--------------|---------------------|--------------|------------|--------------|---------------------|-----|
| Cloze        | Cloze               | PZERO        | AS         | AS-PZERO     | All                 |     |
| V            | V                   |              | <b>√</b>   |              | 62.54 ± 0.47        |     |
| $\checkmark$ | V                   |              |            | $\checkmark$ | 62.85 ± 0.19        | 1   |
| V            |                     | $\checkmark$ | <b>√</b>   |              | 63.06 ± 0.19        |     |
| <b>√</b>     |                     | V            |            | $\checkmark$ | <b>64.18</b> ± 0.23 | (2) |

- ① The effective of PZERO task
- 2 The effective of AS-PZERO model

| Pretraining  | Further Pretraining |       | Finetuning |              | ZAR F <sub>1</sub>  |   |
|--------------|---------------------|-------|------------|--------------|---------------------|---|
| Cloze        | Cloze               | PZERO | AS         | AS-PZERO     | All                 |   |
| V            | V                   |       | <b>✓</b>   |              | 62.54 ± 0.47        | _ |
| $\checkmark$ | V                   |       |            | $\checkmark$ | 62.85 ± 0.19        | 1 |
| $\checkmark$ |                     | V     | <b>✓</b>   |              | 63.06 ± 0.19        |   |
| $\checkmark$ |                     | V     |            | V            | <b>64.18</b> ± 0.23 |   |

The model affectively learns anaphoric relational knowledge

- 1 The effective of PZERO task
- ② The effective of AS-PZERO model

| Pretraining  | Further Pretraining |       | Finetuning |              | ZAR F <sub>1</sub>  |
|--------------|---------------------|-------|------------|--------------|---------------------|
| Cloze        | Cloze               | PZERO | AS         | AS-PZERO     | All                 |
| V            | <b>√</b>            |       | <b>V</b>   |              | 62.54 ± 0.47        |
| $\checkmark$ | $\checkmark$        |       |            | $\checkmark$ | 62.85 ± 0.19        |
| V            |                     | V     | <b>✓</b>   |              | 63.06 ± 0.19        |
| <b>√</b>     |                     | V     |            | V            | <b>64.18</b> ± 0.23 |

The model successfully address the pretrain-finetune discrepancy

- 1 The effective of PZERO task
- ② The effective of AS-PZERO model

| Pretraining | Further Pretraining |       | Finetuning |              | ZAR F <sub>1</sub>  |   |
|-------------|---------------------|-------|------------|--------------|---------------------|---|
| Cloze       | Cloze               | PZERO | AS         | AS-PZERO     | All                 |   |
| V           | V                   |       | <b>✓</b>   |              | 62.54 ± 0.47        | _ |
| V           | V                   |       |            | $\checkmark$ | 62.85 ± 0.19        | 1 |
| V           |                     | V     | <b>√</b>   |              | 63.06 ± 0.19        |   |
| V           |                     | V     |            | V            | <b>64.18</b> ± 0.23 | 2 |

Both the proposals improve the performance and achieve SoTA

### **Analysis**

- The following cases are hard to predict
  - The arguments far from a target predicate



- The arguments of predicate in the passive voice

active more passive The man used  $\phi$  difficult  $\phi$  was used by the man

### Conclusion

- Task: **Zero Anaphora Resolution (ZAR)** in Japanese
- We proposed
  - A new **pretraining** task for ZAR, **PZERO** task
  - A new **finetuning** method for ZAR, **AS-PZERO** model
- Results:
  - The two proposals **boost the SoTA** performance of ZAR
  - Our analysis provides new insights on the remaining challenges

## Thank you for listening!